Министерство образования и науки Мурманской области Государственное автономное учреждение дополнительного образования Мурманской области

«Мурманский областной центр дополнительного образования «Лапландия»

ПРИНЯТА

методическим советом

Протокол

от «26» yas 2021

Nº 42

Председатель Уту

А Ю Решетова

УТВЕРЖДЕНА Приказом ГАУДО МО

«МОЦДО «Лапландия»

or «26 » <u>ulal</u> 2021r.

Директровичения С.В. Кулаков

Адаптированная

дополнительная общеобразовательная общеразвивающая программа технической направленности

«Основы механики и робототехники (для детей с ОВЗ с НОДА). Линия 1»

Возраст учащихся: 14-18 лет

Срок реализации программы: 2 года

Автор-составитель:

Патрикеева Ольга Николаевна

педагог дополнительного образования

Мурманск 2021

Пояснительная записка

Адаптированная дополнительная общеобразовательная общеразвивающая программа технической направленности «Основы механики и робототехники. ОВЗ с НОДА» Линия 1 предназначена для учащихся с нарушениями опорно-двигательного аппарата, достигшим уровня развития, близкого возрастной норме, имеющим положительный опыт общения со здоровыми сверстниками и предполагает создание интерактивного образовательного пространства для погружения учащихся с НОДА в научную и инженерную культуру. Адаптированная дополнительная общеобразовательная программа технической направленности «Основы механики и робототехники. ОВЗ с НОДА» Линия 1 базируется на принципах инновационности, научности и доступности с учетом особенностей психофизического развития и возможностей учащихся с НОДА.

Психолого-педагогическая характеристика учащихся с НОДА

Учащиеся с НОДА — это категория детей с нарушениями опорно-двигательного аппарата - неоднородная по составу группа учащихся. Группа учащихся с нарушениями опорно-двигательного аппарата объединяет детей со значительным разбросом первичных и вторичных нарушений развития. Это дети с нарушениями функций опорно-двигательного аппарата различного этиопатогенеза, передвигающиеся самостоятельно или с применением ортопедических средств, имеющие нормальное психическое развитие и разборчивую речь. Достаточное интеллектуальное развитие у этих детей часто сочетается с отсутствием уверенности в себе, с ограниченной самостоятельностью, с повышенной внушаемостью. Личностная незрелость проявляется в наивности суждений, слабой ориентированности в бытовых и практических вопросах жизни.

Особые образовательные потребности учащихся с НОДА

Особые образовательные потребности у детей с нарушениями опорно-двигательного аппарата задаются спецификой двигательных нарушений, а также спецификой нарушения психического развития, и определяют особую логику построения учебного процесса, находят своё отражение в структуре и содержании образования. Наряду с этим можно выделить особые по своему характеру потребности, свойственные всем учащимся с НОДА:

- обязательность непрерывности коррекционно-развивающего процесса, реализуемого, как через содержание образовательных областей, так и в процессе индивидуальной работы;
- требуется введение в содержание обучения специальных разделов, не присутствующих в
 Программе, адресованной традиционно развивающимся сверстникам;
- необходимо использование специальных методов, приёмов и средств обучения (в том числе специализированных компьютерных и ассистивных технологий), обеспечивающих реализацию «обходных путей» обучения;

- индивидуализация обучения требуется в большей степени, чем для нормально развивающегося ребёнка;
- обеспечение особой пространственной и временной организации образовательной среды.

Для данной группы учащихся обучение в системе дополнительного образования возможно при условии создания для них безбарьерной среды, обеспечения специальными приспособлениями и индивидуально адаптированным рабочим местом. Помимо этого, дети с НОДА нуждаются в различных видах помощи (в сопровождении на уроках, помощи в самообслуживании), что обеспечивает необходимые в период начального обучения щадящий режим, психологическую и коррекционно-педагогическую помощь.

Педагогическая целесообразность. Занятия программе ПО «Основы механики И робототехники. ОВЗ с НОДА» Линия 1 начинаются с изучения проблемной ситуации в рамках предложенных кейсов, далее учащиеся выполняют ряд лабораторных работ, после чего представляют свои конструкторские решения, согласно, поставленных задач. Благодаря глубокому изучению механики и механизмов каждый вид деталей и компонентов рассматривается учащимися ОВЗ с НОДА подробно, исследуется очень тщательно тактильно. На первом году обучения учащиеся, благодаря тонким изучающим движениям пальцев, осуществляют последовательную развертку контура деталей, механизмов, сборок и их компонентов, изучают влияние сил и законов физики. На втором году обучения на основе имеющихся знаний о механике и механизмах, относительно поставленной задачи, происходит создание роботов учащимися. Создание робота на всех этапах, его конструирование позволяет учащимся на протяжении каждого занятия взаимодействовать с деталями различной величины, осуществлять их сборку и программирование, обсуждая этапы работы, получают возможность создавая, общаться, принимать решения всем вместе, не боясь, в команде, что благотворно влияет на формирование познавательной деятельности учащихся ОВЗ с НОДА, на их моторное развитие, развитие мышления и изобретательства.

Обоснование выбора уровня и направленности программы обусловлена с одной стороны запросом родителей и интересом учащихся с НОДА к занятиям научно-техническим творчеством, с другой — учитывая психофизические особенности данных детей, программа направлена на развитие творческих и изобретательских способностей, обеспечение социальной успешности, а также сохранение и укрепление здоровья учащихся. Учащиеся с нарушениями опорнодвигательного аппарата обязательно начинают обучение с изучения основ механики, постепенно погружаясь в практическую робототехнику. Уровень программы — базовый. Направленность программы — техническая.

Актуальность и новизна программы «Введение в разработку компьютерных игр. ОВЗ. Линия 1» обусловлена тем, что у детей практически любого возраста отмечается повышенный интерес к механическим игрушкам и роботам, в частности к конструкторам Lego. В рамках представленной

программы предлагается использовать существующий интерес к конструкторам Lego со стороны учащихся для того, чтобы постепенно сместить акцент от простой сборки по инструкции к изобретательской групповой, командной работе, создании групповых идей, претворяющиеся, в дальнейшем, в сборки и роботы, глубокую робототехнику согласно поставленных задач. Новизна программы заключается в интегрировании содержания, методов обучения и образовательной среды, обеспечивающие расширенные возможности учащихся ОВЗ с НОДА в получении знаний по механике, законов физики и дальнейшем применения полученных знаний в робототехнике. Так в программу, в рамках освоения hard-компетенций, интегрированы практические занятия новейших образовательных решений Lego Education BricQ Motion Start, Lego Education BricQ Motion Prime на первом году обучения и Lego Education SPIKE Prime на втором году обучения.

Программа разработана в соответствии с:

- федеральным законом от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
- приказом Министерства образования и науки РФ от 09.11.2018 № 196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- письмом Министерства образования и науки РФ от 25.07.2016 № 09-1790 «Рекомендации по совершенствованию дополнительных образовательных программ, созданию детских технопарков, центров молодежного инновационного творчества и внедрению иных форм подготовки детей и молодежи по программам инженерной направленности»;
- письмом Министерства образования и науки РФ от 18.11.2015 № 09-3242 «Методические рекомендации по проектированию дополнительных общеобразовательных программ (включая разноуровневые программы)»;
- письмом Министерства образования и науки РФ от 29.03.2016 № ВК-641/09 «Методические рекомендации по реализации адаптированных дополнительных общеобразовательных программ, способствующих социально-психологической реабилитации, профессиональному самоопределению детей с ограниченными возможностями здоровья, включая детей-инвалидов, с учетом их особых образовательных потребностей».
- постановлением Главного государственного санитарного врача РФ от 28.09.2020 № 28 «Об утверждении Санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи».
- постановлением Главного государственного санитарного врача РФ от 28.01.2021 №2 «Об
 утверждении санитарных правил и норм СанПиН 1.2.3685-21 «Гигиенические нормативы и
 требования к обеспечению безопасности и (или) безвредности для человека факторов среды
 обитания».

Цель программы: освоение Hard и Soft компетенций у учащихся в области механики и робототехники, пространственного, критического, изобретательского и продуктового мышления, творческих и инженерных способностей у учащихся ОВЗ с НОДА на основе кейс-технологий.

Задачи программы:

Обучающие задачи 1 года обучения:

- познакомить с состоянием и перспективами робототехники в настоящее время;
- познакомить с правилами безопасного пользования оборудования;
- изучить базовые технологии, применяемые при создании роботов;
- познакомить с основными принципами механики;
- изучить основные законы физики, силы;

Обучающие задачи 2 года обучения:

- изучить различные виды механизмов;
- изучить датчики, принципы работы моторов;
- познакомить с движением робота по линии и объездом препятствий;
- изучить приемы и технологии разработки простейших алгоритмов и систем управления,
 машинного обучения, технических устройств и объектов управления;
- изучить принципы работы робототехнических элементов;
- обучить владению технической терминологией, технической грамотности;
- сформировать умение пользоваться технической литературой;
- способствовать формированию навыков работы в проектных технологиях

Развивающие задачи 1 и 2 года обучения:

- развить информационную культуру у учащихся;
- развить фантазию и образное мышление;
- развить пространственное мышление;
- развить критическое мышление;
- развить изобретательское и продуктовое мышление;
- развить алгоритмическое мышление.

Воспитательные задачи 1 и 2 года обучения:

- воспитать аккуратность, трудолюбие, дисциплинированность при выполнении работ, бережное отношение к оборудованию и материалам;
- воспитать умение доводить работу до конца;
- повысить мотивацию учащихся к изобретательству и созданию собственных роботизированных систем;
- сформировать навыки проектного мышления, работы в команде, эффективно распределять обязанности.

Отличительные особенности программы

Отличительной особенностью программы является то, что она основана на проектной деятельности и кейс-технологиях. Во время занятий перед учащимися ставятся ситуационные задачи из жизни, которые они совместно решают, проходя через основные этапы жизненного цикла программного продукта. Программа отвечает особым образовательным потребностям у детей с нарушениями опорно-двигательного аппарата, поскольку определяет особую логику построения учебного процесса, благодаря современным методикам ведения образовательной деятельности. За наполняемости группы осуществляется непрерывность небольшой коррекционноразвивающего процесса, реализуемого как через содержание образовательных областей, так и в процессе индивидуальной работы. В данной программе количество часов на проработку материала увеличено вдвое, в отличие от программы адресованной традиционно развивающимся сверстникам, что дает более качественную работу на занятиях с детьми с НОДА Так в программе предусмотрена работа с образовательными решениями Lego Education в разделе Hard, создающую оптимальные условия занятий и коррекцию для учащихся с НОДА. Программа обеспечивает необходимый щадящий режим, психологическую и коррекционно-педагогическую помощь.

Адаптированная дополнительная программа «Введение механику и робототехнику. ОВЗ с НОДА» Линия 1 преимущественно ориентирована на решение технологических задач, в том числе с участием промышленных предприятий, в перспективе проектной деятельности учащихся в Технопарке. Основные требования к образовательной программе Кванториума: интерактивность, проектный подход, работа в команде.

Разработка и реализация программы осуществляется с учетом следующих базовых принципов: интерес, инновационность, доступность и демократичность, качество, научность, адаптированность.

Возраст учащихся, участвующих в реализации программы: 14-18 лет.

Содержание и объем стартовых знаний, необходимых для начальных этапов освоения программы: для успешного прохождения программы учащемуся необходимо иметь первичные навыки работы на компьютере.

Срок реализации программы: 2 года.

Объем программы: 288 часов:

- 1 год обучения 144 часа;
- 2 год обучения 144 часа.

Режим занятий: 2 раза в неделю по 2 академических часа.

Формы организации учебной деятельности: групповая, индивидуальная, парная.

Количество учащихся в группе: 5-8 человек.

Сроки обучения по данной образовательной программе могут быть увеличены с учетом особенностей их психофизического развития в соответствии с заключением психолого-медико-педагогической комиссии или психолого-медико-педагогического консилиума образовательной организации для учащихся с ОВЗ с НОДА.

Результаты освоения программы

Личностные результаты 1 года обучения:

- развитие навыков сотрудничества со взрослыми и сверстниками в разных социальных ситуациях, умения не создавать конфликтов и находить выходы из спорных ситуаций;
- формирование критического отношения к информации и избирательности её восприятия;
- осмысление мотивов своих действий при выполнении заданий;
- развитие любознательности, сообразительности при выполнении разнообразных заданий проблемного и эвристического характера;
- развитие внимательности, настойчивости, целеустремленности, умения преодолевать трудности;
- формирование ответственного отношения к обучению;
- формирование способности к саморазвитию и самообразованию;
- формирование коммуникативных навыков в общении и сотрудничестве.

Личностные результаты 2 года обучения:

- развитие самостоятельности суждений, независимости и нестандартности мышления;
- освоение социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах;
- формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками;
- развитие любознательности, сообразительности при выполнении разнообразных заданий проблемного и эвристического характера;
- развитие внимательности, настойчивости, целеустремленности, умения преодолевать трудности.

Метапредметные результаты 1 года обучения:

- формирование умения планировать, контролировать и оценивать учебные действия в соответствии с поставленной задачей и условиями ее реализации, определять наиболее эффективные способы достижения результата;
- освоение способов решения проблем творческого и поискового характера;
- формирование умений работать самостоятельно и в группе;
- формирование умения самостоятельно определять цели и задачи своего обучения;

- отработка умений оценивать правильность выполнения учебной задачи;
- формирование умения понимать причины успеха/неуспеха учебной деятельности и способности конструктивно действовать даже в ситуациях неуспеха.

Метапредметные результаты 2 года обучения:

- отработка умений самостоятельно ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности;
- отработка умений оценивать правильность выполнения учебной задачи;
- овладение основами самоконтроля, самооценки;
- отработка умений самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения;
- отработка умений организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе.

Предметные результаты 1 года обучения:

Знать:

- как толкающее и тяговое усилия влияют на движение объекта;
- как толкающее усилие на объект может изменить скорость или направление его движения, начать или остановить движение объекта;
- влияние различных толкающих и тяговых усилий на движение объекта;
- как сила, масса и трение могут изменить скорость объекта и повлиять на пройденное расстояние;
- разницу между массой и объёмом;
- влияние силы ветра на движущийся объект;
- принцип движения маятника на колёсах;
- три закона Ньютона;
- как силы влияют на движение объектов, находящихся на разной высоте;
- что такое инерциальная система отсчёта;
- векторы силы и результирующее движение двух сталкивающихся объектов;
- что такое выигрыш в силе в системе блоков шкиве;
- как наклонная плоскость/клин может изменить направление движения мяча.

Уметь:

- определять силу тяжести и использовать ее для сохранения равновесия;
- изменять движение объектов, толкающих друг друга при соприкосновении;
- с помощью механизма реечной передачи, преобразовывать поступательное движение под воздействием тягового усилия во вращательное толкающее усилие;

- изменять скорость движения с помощью шестерёнок разных размеров;
- прогнозировать, как силы, действующие на объект, могут изменить характер его движения;
- выявлять связь между массой объекта и его движением по наклонной плоскости;
- фиксировать данные и использовать их для прогнозирования и выявления закономерностей.

Иметь навыки:

- сборки различных механизмов;
- учитывать законы физики при сборке механизма;
- определения и расчета величин воздействующих сил на объект;
- проведения испытаний и измерения влияние уравновешенных и неуравновешенных сил на объект;
- наблюдения закономерностей и делать прогнозы;
- создания эскизов и опытных моделей, сборки, испытаний, обнаружения недостатков и устранения их;
- перестраивать модель и экспериментировать, чтобы собирать собственные механизмы.

Предметные результаты 2 года обучения:

Знать:

- основные механизмы;
- как управлять движением робота: движение по прямой, разворот на месте, движение по кривой, поворот по сигналу датчика, движение по заданной траектории, с помощью приводной платформы;
- возможности программирования продвинутой приводной платформы для использования различных инструментов.
- необходимые команды для управления роботом на языке программирования Scratch.

Уметь:

- собирать приводную платформу;
- использовать датчик расстояния для обнаружения предмета и выполнения соответствующего действия;
- написать программу, выполняя которую приводная платформа будет двигаться вдоль чёрной линии.
- написать программу, выполняя которую приводная платформа будет останавливаться у чёрной линии;

Иметь навыки:

- определения критериев успешного решения поставленных задач;
- создания прототипов, тестировать и оценивать предлагаемые решения;

- разработки стратегий решения задач, последовательных усовершенствованиях и инновационных решениях;
- создания презентации с чётко описанным принципом работы своей программы робота.

Формы подведения итогов реализации дополнительной программы

Подведение итогов реализуется в рамках следующих мероприятий: конкурс роботов, защита проектов, групповые соревнования.

Учебный план

1 года обучения

No	Раздел программы	Всего	Теория	Практика	Формы
Π/Π		часов			аттестации/конт
					роля
1.	Введение в образовательную	2	1	1	Наблюдение,
	программу. Техника безопасности.				тестирование
	Первичный инструктаж.				
2.	Кейс 1: «Сортировочный центр»	32	8	24	Демонстрация
					решений кейса
3.	Кейс 2: «Фабрика»	32	8	24	Демонстрация
	Повторный инструктаж.				решений кейса
4.	Кейс 3: «Проблема	34	8	26	Демонстрация
	транспортировки».				решений кейса
5.	Кейс 4: «Новый энергоисточник»	32	8	24	Демонстрация
					решений кейса,
					тестирование
6.	Мероприятия, направленные на	12	4	8	Демонстрация
	развитие общекультурных				решений кейса
	компетенций.				
7.	Итого	144	37	107	

2 года обучения

№	Раздел программы	Всего	Теория	Практика	Формы
Π/Π		часов			аттестации/
					контроля
1.	Кейс 1: «Объезд препятствий».	32	8	24	Демонстрация
	Повторный инструктаж.				решений кейса
2.	Кейс 2: «Захват груза».	32	8	24	Демонстрация
					решений кейса
3.	Кейс 3: «Езда по линии».	34	8	26	Демонстрация
	Повторный инструктаж.				решений кейса
4.	Кейс 4: «Подъемный рычаг».	32	8	24	Демонстрация
					решений кейса
5.	Заключительное занятие.	2	1	1	тестирование
6.	Мероприятия, направленные на	12	4	8	Демонстрация
	развитие общекультурных				решений кейса
	компетенций.				
7.	Итого	144	37	107	

Содержание программы

1 год обучения

1. Введение в образовательную программу, техника безопасности. Первичный инструктаж. (2ч.):

- *Теория (1):* Введение в образовательную программу Ознакомление учащихся с программой, приемами и формами работы. Первичный инструктаж.
- *Практика (1):* Знакомство с группой. Игры на командообразование. знакомство с образовательными решениями Lego BriQ Motion Start/Prime.

2. Кейс 1: «Сортировочный центр» (32ч.):

- *Теория (8):* Влияние толкающего и тягового усилия на движение объекта. Преобразование прикладываемой силы в разные виды движения. Действие силы на объект, их влияние на его движение. Влияние силы тяжести и массы на движение управляемого объекта. Прогнозы и закономерности. Понятие разницы между массой и объёмом. Воздействие уравновешенных и неуравновешенных сил на движение автомобиля при скатывании с наклонной плоскости. Гравитационная тяга. Связь между массой объекта и его движением по наклонной плоскости. Инерциальная система отсчёта.
- *Практика (24):* Лабораторная работа №1.1, №2.1, №2.4 и №2.6 из набора Lego Education BricQ Motion Start, лабораторная работа №3 из набора Lego Education BricQ Motion Prime. Работа над задачами кейса.

3. Кейс 2: «Фабрика» (32ч.):

- *Теория (8):* Работа механизма реечной передачи, преобразующего поступательное движение под воздействием тягового усилия во вращательное толкающее усилие. Изменение скорости объекта, влияние скорости на пройденное расстояние. Понятие трения качения. Правильность фиксации данных и использование их для прогнозирования. Преобразование прикладываемой силы в разные виды движения. Векторы силы и результирующее движение двух сталкивающихся объектов. Наклонная плоскость/клин.
- *Практика (24):* Лабораторная работа №1.3, №1.4, №2.2 и №2.3 из набора Lego Education BricQ Motion Start, лабораторная работа №1 и №4 из набора Lego Education BricQ Motion Prime. Работа над задачами кейса.

4. Кейс 3: «Проблема транспортировки». Повторный инструктаж. (34ч.):

• *Теория (8):* Сила тяжести и равновесие. Влияние уравновешенных и неуравновешенных сил на объект. Выигрыш в силе в системе блоков — шкиве. Движения маятника, маятник на колёсах. Законы Ньютона. Повторный инструктаж.

• *Практика (26):* Лабораторная работа №1.5 и №2.5 из набора Lego Education BricQ Motion Start, лабораторная работа №2 из набора Lego Education BricQ Motion Prime. Работа над задачами кейса.

5. Кейс 4: «Новый энергоисточник» (32ч.):

- *Теория (8):* Толкающее, тяговое усилие, уравновешенные и неуравновешенные силы, сила тяжести. Теория паруса. Воздушный винт. Аэродинамический механизм. Атмосферное давление. Вращательное движение.
- *Практика (24):* Лабораторная работа №1.1 и №1.6 из набора Lego Education BricQ Motion Start, лабораторная работа №5 и №6 из набора Lego Education BricQ Motion Prime. Работа над задачами кейса.

6. Мероприятия, направленные на развитие общекультурных компетенций (12ч.):

- Теория (4): новые знания и теоретические задания по освоению общекультурных компетенций.
- Практика (8): выполнение практических задания по освоению общекультурных компетенций.

2 год обучения

1. Кейс 1: «Объезд препятствий». Повторный инструктаж. (32ч.):

- *Теория (8):* Объяснение целей и задач занятия. Знакомство с набором Lego Education SPIKE Prime. Гироскопический датчик. Изучение разных аспектов движения тренировочной приводной платформы, используя различные подпрограммы. Беседа: что такое псевдокод и как его можно использовать для планирования программ? Обсуждение тактики учащихся; перечисление всех движений, которые, по их мнению, может выполнять приводная платформа. Повторный инструктаж.
- *Практика (24):* Сборка тренировочной приводной платформы. Изменение параметров используемых программных блоков и наблюдение, к чему это приведёт. Написание программы, выполняя которую приводная платформа будет двигаться по квадратной траектории. Соревнование по навигации.

2. Кейс 2: «Захват груза» (32ч.):

• *Теория (8):* Обсуждение: как можно использовать датчик расстояния для измерения дистанции? Обсуждение соревнований роботов и возможностей научить их отыскивать и перемещать предметы.

• Практика (24): Сборка тренировочной приводной платформы, манипулятора, флажка и куба. Испытание двух подпрограмм для остановки приводной платформы перед флажком, чтобы решить, какая из них эффективнее. Добавление нескольких программных блоков, чтобы опустить манипулятор приводной платформы ниже, захватить куб и поставить его на расстоянии по меньшей мере 30 см от флажка. Эстафетная гонка.

3. Кейс 3: «Езда по линии». Повторный инструктаж. (34ч.):

- *Теория (8):* Датчик цвета. Обсуждение: каким образом датчик цвета обнаруживает черную линию? Обсуждение площадок для соревнований и линий, которые на них используются. Различные виды линий и их пересечений: тонких линиях, прямых углах, Т-образных пересечениях, прерывистых линиях, черных линиях, пересекаемых цветными линиями.
- Практика (26): Сборка тренировочной приводной платформы с датчиком цвета. Воспроизведение первой подпрограммы, чтобы заставить тренировочную приводную платформу проехать вперед и остановиться перпендикулярно черной линии. Воспроизведение следующей подпрограммы и описание увиденного. Создание программы, выполняя которую приводная платформа будет двигаться вдоль черной линии. Оптимизация подпрограммы.

4. Кейс 4: «Подъемный рычаг» (32ч.):

- *Теория (8):* Обсуждение основных функций каждой конструкции и то, каким образом они помогают создать крепкую приводную платформу, если их объединить. Обсуждение, каким образом можно использовать «Другие блоки» для написания программ. Просмотр видео о роботах, созданных для производства и определение самых эффективных методов конструирования и программирования. Декомпозиция задачи. Использование данного навыка для выполнения поставленной задачи. Обсуждение важности планирования каждого этапа программы. Оценка эффективности псевдокода и использования собственных блоков в рамках планирования. Использование моторов, датчиков и оптимизированные программы для решения практических задач за максимально короткое время.
- Практика (24): Сборка продвинутой приводной платформы. Воспроизведение первой программы, чтобы испытать собранные приводные платформы. Испытание разных примеров программ, чтобы изучить движение продвинутой приводной платформы. Сборка продвинутой приводной платформы и двух флажков. Испытание готовой программы. Написание своих программ, выполняя которые приводная платформа будет двигаться: 1) по квадрату, 2) по кругу. Иные траектории движения. Сборка отвала бульдозера, подъемного рычага и ящиков. Все это прикрепляется к приводной платформе. Воспроизведение пробной программы. Создание подпрограмм для управления обоими инструментами. Написание

программы с использованием гироскопического датчика для корректировки положения приводной платформы.

5. Заключительное занятие (2ч.):

- *Теория (1):* Оценка результатов изготовленных моделей. Документирование и демонстрация работоспособности моделей. Использование панели инструментов при программировании. Исследование в виде табличных или графических результатов и выбор настроек.
- Практика (1): Итоговая выставка работ учащихся.

6. Мероприятия, направленные на развитие общекультурных компетенций. (12ч.):

- Теория (4): новые знания и теоретические задания по освоению общекультурных компетенций.
- Практика (8): выполнение практических задания по освоению общекультурных компетенций.

IV. КОМПЛЕКС ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИХ УСЛОВИЙ

- 1.1. Кейсы (Приложение 1).
- 1.2. Календарный учебный график (Приложение 2).
- 1.3. Ресурсное обеспечение программы:

Рекомендуемое учебное оборудование (на группу из 12 учащихся):

Основное оборудование и материалы	Кол-во	Ед. изм
Набор LEGO® Education BricQ Motion Старт	6	шт.
Комплект на группу LEGO® Education BricQ Motion Старт (1 x 45401 + 12 x 2000471)	1	шт.
Набор LEGO® Education BricQ Motion Prime	6	шт.
Комплект на группу LEGO® Education BricQ Motion Prime (1 x 45400 + 12 x 2000470)	1	шт.
Набор LEGO® Education Spike Prime	6	шт.
Ресурсный набор LEGO® Education SPIKE™ Prime 45680	3	шт.

Материально-техническое обеспечение:

Аппаратное обеспечение:

- кабинет, оснащенный компьютерной техникой, не менее 1 ПК на 2 ученика.
- проектор;
- доска;
- Доступ к сети Интернет
- принтер цветной.

Программное обеспечение:

- операционная система Windows 10 professional;
- браузер google chrome;

Информационно-методическое обеспечение

Основной организационной формой обучения в ходе реализации данной образовательной программы является занятие. Эта форма обеспечивает организационную чёткость и непрерывность процесса обучения. Знание педагогом индивидуальных особенностей воспитанников позволяет эффективно использовать стимулирующее влияние коллектива на учебную деятельность каждого обучающегося.

Неоспоримым преимуществом занятия, является возможность соединения фронтальных, групповых и индивидуальных форм обучения.

Формы занятий: соревнования, выставки, конкурсы, практикум, занятие – консультация, занятие - ролевая игра, занятие – презентация, занятие проверки и коррекции знаний и умений. Методы организации учебного процесса:

- <u>Информационно рецептивный метод</u> (предъявление педагогом информации и организация восприятия, осознания и запоминание учащимися данной информации).
- <u>Репродуктивный метод</u> (составление и предъявление педагогом заданий на воспроизведение знаний и способов умственной и практической деятельности, руководство и контроль за выполнением; воспроизведение воспитанниками знаний и способов действий по образцам, произвольное и непроизвольное запоминание).
- <u>Метод проблемного изложения</u> (постановка педагогом проблемы и раскрытие доказательно пути его решения; восприятие и осознание обучающимися знаний, мысленное прогнозирование, запоминание).
- <u>Эвристический метод</u> (постановка педагогом проблемы, планирование и руководство деятельности учащихся; самостоятельное решение обучающимися части задания, непроизвольное запоминание и воспроизведение).
- <u>Исследовательский метод</u> (составление и предъявление педагогом проблемных задач и контроль за ходом решения; самостоятельное планирование обучающимися этапов, способ исследования, самоконтроль, непроизвольное запоминание).

В организации учебной познавательной деятельности используются также словесные, наглядные и практические методы.

Словесные методы. Словесные методы педагог применяет тогда, когда главным источником усвоения знаний обучающимися является слово (без опоры на наглядные способы и практическую работу). К ним относятся: рассказ, опрос, объяснение и т.д.

Наглядные методы. К ним относятся методы обучения с использованием наглядных пособий.

Практические методы. Методы, связанные с процессом формирования и совершенствования умений и навыков обучающихся. Основным методом является практическое занятие.

1. Дидактические средства.

В ходе реализации образовательной программы педагогом используются дидактические средства: учебные наглядные пособия, демонстрационные устройства, технические средства.

- 2. **Формы подведения итогов**: промежуточные проекты, тестирования Формы и методы обучения:
 - 1. Формирование и совершенствование умений и навыков (изучение нового материала, практика).

- 2. Познавательный (восприятие, осмысление и запоминание учащимися нового материала с привлечением наблюдения готовых примеров, моделирования, изучения иллюстраций, восприятия, анализа и обобщения демонстрируемых материалов).
- 3. Метод проектов (при усвоении и творческом применении навыков и умений в процессе разработки собственных моделей).
- 4. Систематизирующий (опрос по теме, составление систематизирующих таблиц, графиков, схем и т.д.).
- 5. Контрольный метод (при выявлении качества усвоения знаний, навыков и умений и их коррекция в процессе выполнения практических заданий).
- 6. Групповая работа (используется при совместной работе над кейсом, а также при разработке проектов).
- 7. Индивидуальная работа (используется при работе с одарёнными детьми и детьми инвалидами)

Рефлексия

Возможность обдумать то, что учащиеся запрограммировали, помогает им более глубоко понять идеи, с которыми они сталкиваются в процессе своей деятельности на предыдущих этапах. Размышляя, учащиеся устанавливают связи между полученной ими новой информацией и уже знакомыми им идеями, а также предыдущим опытом.

Развитие

Творческие задачи, представляющие собой адекватный вызов способностям ребёнка, наилучшим образом способствуют его дальнейшему обучению и развитию. Радость свершения, атмосфера успеха, ощущение хорошо выполненного дела – всё это вызывает желание продолжать и совершенствовать свою работу.

Формы отслеживания и фиксации результатов

В течение учебного года для определения уровня усвоения программы учащимися осуществляются диагностические срезы:

- входная диагностика тестирование, где выясняется стартовый уровень ЗУН учащегося (Приложение 3).
- промежуточная диагностика позволяет выявить достигнутый на данном этапе уровень ЗУН учащихся, в соответствии с пройденным материалом программы. Предлагается тестирование, а также учитывается участие в соревнованиях и проектная деятельность учащихся (Приложение 4).
- итоговая диагностика проводится в конце учебного года (демонстрация и публикация проектов) и предполагает комплексную проверку образовательных результатов в виде теста по всем ключевым направлениям, а также учитывается участие в соревнованиях и проектная

деятельность учащихся. Данный контроль позволяет проанализировать степень усвоения программы учащимися (*Приложение 5*).

Педагог фиксирует деятельность и результаты учащихся в сводную таблицу результатов обучения (*Приложение 6*).

Итоговые результаты контроля фиксируются в диагностической карте (Приложение 7).

Виды контроля

Виды контроля	Содержание	Методы	Сроки
			контроля
Входной	Начальный уровень подготовки учащихся,	Тестирование	Сентябрь
	имеющиеся знания, умения и навыки,		1 г. о.
	связанные с предстоящей деятельностью.		
Промежуточный	Освоение учебного материала за полугодие,	Тестирование,	Май 1 г.
	позволяет выявить достигнутый на данном	Демонстрация	0.
	этапе уровень ЗУН учащихся, в	решений кейса	
	соответствии с пройденным материалом		
	программы		
Текущий	Проверка усвоения знаний	Беседа	В течении
			1 и 2 г. о.
Итоговый	Проектная деятельность	Тестирование,	Май 2 г.
	Освоение учебного материала за учебный	Демонстрация	0.
	год, предполагает комплексную проверку	решений кейса	
	образовательных результатов по всем		
	ключевым направлениям		

Оценка уровней освоения программы

Уровни /%	Параметры	Показатели
Высокий уровень/	Теоретические	Оценка теоретических знаний на основе тестирования.
80-100%	знания.	Учащийся освоил материал в полном объеме. Знает и понимает значение терминов, самостоятельно ориентируется в содержании материала по темам.
	Практические умения.	Способен свободно применять в практической работе полученные знания. Учащийся проявляет устойчивое внимание к выполнению заданий, сосредоточен во время практической работы, получает результат своевременно. Может оценить результаты выполнения своего задания и дать оценку работы своего товарища.
	Навыки ведения проектной деятельности.	Учащийся прекрасно работает со всеми членами команды. Всегда справляется с поставленной задачей в группе. Свободно генерирует идеи. Легко применяет полученные знания и умения в решении поставленной задачи.
Средний уровень/	Теоретические	Оценка теоретических знаний на основе тестирования.
50-79%	знания.	Учащийся освоил базовые знания, но слабо ориентируется в содержании материала по некоторым темам.
	Практические умения.	Владеет базовыми навыками и умениями, но не всегда может в полном объеме выполнить практическое самостоятельное задание, затрудняется и просит помощи педагога. В работе допускает небрежность, делает ошибки, но может устранить их после наводящих вопросов или

		самостоятельно. Оценить результаты своей деятельности может с подсказкой педагога.
		Учащийся заинтересован, но не всегда проявляет устойчивое внимание к выполнению задания.
	Навыки ведения	Учащийся слабо сосредоточен во время работы в группе, не всегда умеет находить общий язык с
	проектной	членами команды. Справляется с поставленной задачей в группе, но просит помощи и подсказки
	деятельности.	педагога. Не всегда умеет генерировать идеи. Применяет полученные знания и умения в
		решении поставленной задачи, но с некоторыми подсказками педагога или товарищей.
Низкий уровень/	Теоретические	Оценка теоретических знаний на основе тестирования.
0-49%	знания.	Владеет минимальными знаниями, слабо ориентируется в содержании материала.
	Практические умения.	Учащийся способен выполнять каждую операцию практической работы только с подсказкой
		педагога или товарищей. Не всегда правильно применяет в практической работе необходимые
		знания или не использует вовсе. В работе допускает грубые ошибки, не может их найти даже
		после указания. Не способен самостоятельно оценить результаты своей работы.
	Навыки ведения	Учащийся слабо контактирует в работе с членами команды. Не умеет генерировать идеи. Не
	проектной	всегда умеет справиться с поставленной задачей в группе. Решение задачи происходит
	деятельности.	исключительно с подсказкой педагога. Слабо применяет полученные знания и умения в
		решении поставленной задачи, исключительно с подсказками педагога или товарищей.

Список литературы

Для педагога:

- 1. Образовательная робототехника во внеурочной учебной деятельности: учебнометодическое пособие / Л. П. Перфильева, Т. В. Трапезникова, Е. Л. Шаульская, Ю. А. Выдрина; под рук. В. Н. Халамова; М-во образования и науки Челябинской обл., ОГУ «Обл. центр информ. и материально-технического обеспечения образовательных учреждений, находящихся на территории Челябинской обл.» (РКЦ). Челябинск: Взгляд, 2011. 96 с.
- 2. Образовательная робототехника на уроках информатики и физике в средней школе: учебно-методическое пособие / Т. Ф. Мирошина, Л. Е. Соловьева, А. Ю.Могилева, Л. П. Перфильева; под рук. В. Н. Халамова; М-во образования и науки Челябинской обл., ОГУ "Обл. центр информ. и материально-технического обеспечения образовательных учреждений, находящихся на территории Челябинской обл." (РКЦ) Челябинск: Взгляд, 2011. 160 с.
- 3. Образовательная робототехника в начальной школе: учебно-методическое пособие /Т. Ф. Мирошина, Л. Е. Соловьева, А. Ю. Могилева, Л. П. Перфильева; под рук. В. Н. Халамова.; М-во образования и науки Челябинской обл., ОГУ «Обл. центр информ. и материально-технического обеспечения образовательных учреждений, находящихся на территории Челябинской обл.» (РКЦ) Челябинск: Взгляд, 2011. 152 с.
- 4. Никулин С.К., Полтавец Г.А., Полтавец Т.Г. Содержание научно- технического творчества учащихся и методы обучения. М.: Изд. МАИ. 2004.
- 5. Полтавец Г.А., Никулин С.К., Ловецкий Г.И., Полтавец Т.Г. Системный подход к научно-техническому творчеству учащихся (проблемы организации и управления). УМП. М.: Издательство МАИ. 2003.
- 6. Власова О.С. Образовательная робототехника в учебной деятельности учащихся начальной школы. Челябинск, 2014г.
- 7. Мирошина Т. Ф. Образовательная робототехника на уроках информатики и физике в средней школе: учебно-методическое пособие. Челябинск: Взгляд, 2011г.
- 8. Перфильева Л. П. Образовательная робототехника во внеурочной учебной деятельности: учебно-методическое. Челябинск: Взгляд, 2011г.

Для учащихся:

- 1. Никитина Т.В. Образовательная робототехника как направление инженернотехнического творчества школьников: учебное пособие / Т.В. Никитина. Челябинск: Изд-во Челяб.гос. пед. ун-та, 2014.-169 с
- 2. Филиппов С. Уроки робототехники. Конструкция. Движение. Управление. Лаборатория знаний, 2021г.
- 3. Филиппов С.А. Робототехника для детей и родителей. СПб.: Наука,. 2013. 319 с.

1 год обучения

Кейс 1: «Сортировочный центр»

Сортировочный центр имеет несколько гладких спусковых пандусов, по которым перемещаются коробки разного размера и веса. Часто случается так, что некоторые коробки на середине пандуса, а некоторые из-за наклона переворачиваются, что создает трудности в дальнейшей сортировке груза, работникам приходится переворачивать их обратно для дальнейшего сканирования, либо проталкивать дальше вручную по пандусу. Необходимо решить данную проблему Задачи:

- Выполнить лабораторную работу №1.1, №2.1, №2.4 и №2.6 из набора Lego Education BricQ Motion Start.
- Выполнить лабораторную работу №3 из набора Lego Education BricQ Motion Prime.
- На основе пандуса со шкалой для измерения углов выполнить макет горки с грузами сортировочного центра.
- Измерить расстояние, пройденное каждой коробкой с различной массой по пандусу с различными его углами наклона.
- Выполнить расчёты импульса коробок с различной массой.
- Сделайте выводы о проделанной работе, предоставьте результаты.
- Представьте программисту блок-схему для программирования работы пневматического насоса, относительно массы груза.

Кейс 2: «Фабрика»

Фабрика по производству мячей производит мячи различных размеров и назначений. Готовые мячи хорошо спускаются по фабричным пандусам, но есть проблемы на горизонтальной конвейерной ленте: чем выше скорость ленты, тем больше мячи отклоняются назад с ускорением. Также существует проблема и с вертикальным подъемом мячей на верхние ярусы лент для дальнейшей упаковки товара: длительное время работы порожковой ленты. Можно ли оптимизировать производство за счет использования другой механики?

- Выполнить лабораторную работу №1.3, №1.4, №2.2 и №2.3 из набора Lego Education BricQ Motion Start.
- Выполнить лабораторную работу №1 и №4 из набора Lego Education BricQ Motion Prime.

- Создайте движущийся макет горизонтальной конвейерной ленты и верхний упаковочный ярус фабрики.
- Проведите несколько экспериментов, отмечая пройденное время мячами на каждом участке.
- Подберите и установите подходящие механизмы.
- Проведите снова несколько экспериментов, отмечая пройденное время мячами на каждом участке.
- Сравните полученные результаты, сделайте выводы.

Кейс 3: «Проблема транспортировки»

Промышленному предприятию необходима транспортировка грузов и работников с базы к месту добычи в труднодоступные места и обратно. Путь от базы к месту добычи пролегает через болотистую местность, в связи с чем наземная техника справиться с поставленной задачей не может, авиатранспортировка является в данном случае дорогостоящей. Дополнительным условием является: непрерывный процесс доставки людей и грузов и полная его автоматизация.

- Выполнить лабораторную работу №1.5 и №2.5 из набора Lego Education BricQ Motion Start.
- Выполнить лабораторную работу №2 из набора Lego Education BricQ Motion Prime.
- Узнайте где могут быть использованы маятниковые механизмы.
- Какие виды транспортных средств существуют.
- Создайте стационарный (неподвижный) макет транспортировки грузов и людей. Расскажите о том, какие механизмы хотите задействовать.
- Создайте динамический (подвижный) макет. Проведите эксперимент.
- Продемонстрируйте полученный результат.
- Устраните недочеты. Проведите повторный эксперимент.
- Продемонстрируйте полученный результат, сделайте выводы.

Кейс 4: «Новый энергоисточник»

В большинстве населенных пунктов российской Арктики энергообеспечение ведется за счет изолированных систем - собственный энергоисточник имеет почти каждый район. Как правило это дизельные электростанции, которые имеют низкий КПД и высокую себестоимость производства электроэнергии. Известно, что в части районов прибрежных арктических зон скорость ветра превышает 5-7 м/с, что считается крайне благоприятным условием для

экономически эффективного использования энергии ветра. Необходимо создать новый источник энергии.

- Выполнить лабораторную работу №1.1 и №1.6 из набора Lego Education BricQ Motion Start.
- Выполнить лабораторную работу №5 и №6 из набора Lego Education BricQ Motion Prime.
- Создайте стационарный (неподвижный) макет источника энергии. Расскажите о том, какие механизмы хотите задействовать.
- Создайте динамический (подвижный) макет. Проведите эксперимент.
- Продемонстрируйте полученный результат.
- Устраните недочеты. Проведите повторный эксперимент.
- Продемонстрируйте полученный результат, сделайте выводы.

2 год обучения

1. Кейс 1: «Объезд препятствий»

В различных помещениях склада имеются препятствия в виде людей или грузов. Необходимо автоматизировать процесс перевозки грузов из помещения А в помещение В на основе приводной платформы и датчика. Также необходимо, чтобы платформа объезжала препятствия.

- Выполнить лабораторную работу №1 набора Lego Education SPIKE Prime.
- Проведите эксперимент.
- Продемонстрируйте полученный результат.
- Устраните недочеты. Проведите повторный эксперимент.
- Продемонстрируйте полученный результат, сделайте выводы.

2. Кейс 2: «Захват груза»

Забор грузов осуществляется на складе помещения А. Необходимо автоматизировать процесс с использованием датчика движения так, чтобы робот видел место забора груза и с помощью механического захвата одним действием забирал и оттягивал груз. Также необходимо, чтобы захват не поднимался до уровня датчика.

- Выполнить лабораторную работу №2 набора Lego Education SPIKE Prime.
- Проведите эксперимент.
- Продемонстрируйте полученный результат.
- Устраните недочеты. Проведите повторный эксперимент.

• Продемонстрируйте полученный результат, сделайте выводы.

3. Кейс 3: «Езда по линии»

Доставка грузов осуществляется на складе из помещения A в помещение B. С помощью черной сплошной линии на полу робот должен прибывать из помещения A в помещение B и обратно, перевозя грузы. Обучите робота езде по черной линии.

- Выполнить лабораторную работу №3 набора Lego Education SPIKE Prime.
- Проведите эксперимент.
- Продемонстрируйте полученный результат.
- Устраните недочеты. Проведите повторный эксперимент.
- Продемонстрируйте полученный результат, сделайте выводы.

4. Кейс 3: «Подъемный рычаг»

Грузы медицинского помещения имеют форму контейнеров с ручкой. С помощью подъемного рычага обучите робота брать груз. Необходимо предусмотреть, чтобы приводная платформа подъезжала к ящикам под углом, а также необходимо написать программу с использованием гироскопического датчика для корректировки положения приводной платформы.

- Выполнить лабораторную работу №4, №5 и №6 набора Lego Education SPIKE Prime.
- Проведите эксперимент.
- Продемонстрируйте полученный результат.
- Устраните недочеты. Проведите повторный эксперимент.
- Продемонстрируйте полученный результат, сделайте выводы.

Календарный учебный график на 2021/2022 учебный год программы «Основы механики и робототехники. ОВЗ с НОДА». Линия 1

Педагог д/о – Патрикеева Ольга Николаевна

Срок обучения – 2 года.

Год обучения -1 год.

Кол-во учебных недель - 36 Количество часов — 144

Режим проведения занятий: 2 раза в неделю по 2 часа (45 минут)

Праздничные и выходные дни (по производственному календарю при шестидневной

рабочей неделе): 01.05.2021, 09-10.05.2021.

Каникулярный период: летний – 01.06.2021-31.08.2021.

В период школьных каникул время занятий в объединении может быть изменено.

№ п/ п	Месяц	Чис ло	Время проведе ния занятия	Форма заняти я	Кол- во часо в	Тема занятия	Место проведе ния	Форма контроля
1.				Л/ПР		Введение в образовательную программу, техника безопасности. Первичный инструктаж.	каб.205	Беседа Тестирование
2.				Л/ПР		Кейс 1: «Сортировочный центр»	каб.205	Беседа
3.				Л/ПР		Кейс 1: «Сортировочный центр»	каб.205	Беседа
4.				Л/ПР		Кейс 1: «Сортировочный центр»	каб.205	Беседа
5.				Л/ПР		Кейс 1: «Сортировочный центр»	каб.205	Беседа
6.				Л/ПР		Кейс 1: «Сортировочный центр»	каб.205	Беседа
7.				Л/ПР		Кейс 1: «Сортировочный центр»	каб.205	Беседа
8.				Л/ПР		Кейс 1: «Сортировочный центр»	каб.205	Беседа

9.	Л/ПР	Кейс 1: «Сортировочный центр»	каб.205	Беседа
10.	Л/ПР	Кейс 1: «Сортировочный центр»	каб.205	Беседа
11.	Л/ПР	Кейс 1: «Сортировочный центр»	каб.205	Беседа
12.	Л/ПР	Кейс 1: «Сортировочный центр»	каб.205	Беседа
13.	Л/ПР	Кейс 1: «Сортировочный центр»	каб.205	Беседа
14.	Л/ПР	Кейс 1: «Сортировочный центр»	каб.205	Беседа
15.	Л/ПР	Кейс 1: «Сортировочный центр»	каб.205	Беседа
16.	Л/ПР	Кейс 1: «Сортировочный центр»	каб.205	Беседа
17.	Л/ПР	Кейс 1 «Сортировочный центр»	: каб.205	Демонстрация решений кейса.
18.	Л/ПР	Мероприятия, направленные на развитие общекультурных компетенций.	каб.205	Беседа
19.	Л/ПР	Мероприятия, направленные на развитие общекультурных компетенций.	каб.205	Беседа
20.	Л/ПР	Мероприятия, направленные на развитие общекультурных компетенций.	каб.205	Демонстрация решений кейса.
21.	Л/ПР	Кейс 2: «Фабрика»	каб.205	Беседа
22.	Л/ПР	Кейс 2: «Фабрика»	каб.205	Беседа

23.	Л/ПР	Кейс 2: «Фабрика»	каб.205	Беседа
24.	Л/ПР	Кейс 2: «Фабрика»	каб.205	Беседа
25.	Л/ПР	Кейс 2: «Фабрика»	каб.205	Беседа
26.	Л/ПР	Кейс 2: «Фабрика»	каб.205	Беседа
27.	Л/ПР	Кейс 2: «Фабрика»	каб.205	Беседа
28.	Л/ПР	Кейс 2: «Фабрика»	каб.205	Беседа
29.	Л/ПР	Кейс 2: «Фабрика»	каб.205	Беседа
30.	Л/ПР	Кейс 2: «Фабрика»	каб.205	Беседа
31.	Л/ПР	Кейс 2: «Фабрика»	каб.205	Беседа
32.	Л/ПР	Кейс 2: «Фабрика»	каб.205	Беседа
33.	Л/ПР	Кейс 2: «Фабрика»	каб.205	Беседа
34.	Л/ПР	Кейс 2: «Фабрика»	каб.205	Беседа
35.	Л/ПР	Кейс 2: «Фабрика» Повторный инструктаж.	каб.205	Беседа
36.	Л/ПР	Кейс 2: «Фабрика»	каб.205	Демонстрация решений кейса
37.	Л/ПР	Мероприятия, направленные на развитие общекультурных компетенций.	каб.205	Беседа
38.	Л/ПР	Мероприятия, направленные на развитие общекультурных компетенций.	каб.205	Беседа
39.	Л/ПР	Мероприятия, направленные на развитие общекультурных компетенций.	каб.205	Демонстрация решений кейса.
40.	Л/ПР	Кейс 3: «Проблема транспортировки».	каб.205	Беседа
41.	Л/ПР	Кейс 3: «Проблема транспортировки».	каб.205	Беседа
42.	Л/ПР	Кейс 3: «Проблема транспортировки».	каб.205	Беседа
43.	Л/ПР	Кейс 3: «Проблема транспортировки».	каб.205	Беседа

44.	Л/ПР	Кейс 3: «Проблема транспортировки».	каб.205	Беседа
45.	Л/ПР	Кейс 3: «Проблема транспортировки».	каб.205	Беседа
46.	Л/ПР	Кейс 3: «Проблема транспортировки».	каб.205	Беседа
47.	Л/ПР	Кейс 3: «Проблема транспортировки».	каб.205	Беседа
48.	Л/ПР	Кейс 3: «Проблема транспортировки».	каб.205	Беседа
49.	Л/ПР	Кейс 3: «Проблема транспортировки».	каб.205	Беседа
50.	Л/ПР	Кейс 3: «Проблема транспортировки».	каб.205	Беседа
51.	Л/ПР	Кейс 3: «Проблема транспортировки».	каб.205	Беседа
52.	Л/ПР	Кейс 3: «Проблема транспортировки».	каб.205	Беседа
53.	Л/ПР	Кейс 3: «Проблема транспортировки».	каб.205	Беседа
54.	Л/ПР	Кейс 3: «Проблема транспортировки».	каб.205	Беседа
55.	Л/ПР	Кейс 3: «Проблема транспортировки».	каб.205	Беседа
56.	Л/ПР	Кейс 3: «Проблема транспортировки».	каб.205	Демонстрация решений кейса
57.	Л/ПР	Кейс 4: «Новый энергоисточник»	каб.205	Беседа
58.	Л/ПР	Кейс 4: «Новый энергоисточник»	каб.205	Беседа
59.	Л/ПР	Кейс 4: «Новый энергоисточник»	каб.205	Беседа
60.	Л/ПР	Кейс 4: «Новый энергоисточник»	каб.205	Беседа
61.	Л/ПР	Кейс 4: «Новый энергоисточник»	каб.205	Беседа
62.	Л/ПР	Кейс 4: «Новый энергоисточник»	каб.205	Беседа
63.	Л/ПР	Кейс 4: «Новый энергоисточник»	каб.205	Беседа
64.	Л/ПР	Кейс 4: «Новый энергоисточник»	каб.205	Беседа

65.	Л/ПР	Кейс 4: «Новый энергоисточник»	каб.205	Беседа
66.	Л/ПР	Кейс 4: «Новый энергоисточник»	каб.205	Беседа
67.	Л/ПР	Кейс 4: «Новый энергоисточник»	каб.205	Беседа
68.	Л/ПР	Кейс 4: «Новый энергоисточник»	каб.205	Беседа
69.	Л/ПР	Кейс 4: «Новый энергоисточник»	каб.205	Беседа
70.	Л/ПР	Кейс 4: «Новый энергоисточник»	каб.205	Беседа. Тестирование
71.	Л/ПР	Кейс 4: «Новый энергоисточник»	каб.205	Беседа
72.	Л/ПР	Кейс 4: «Новый энергоисточник»	каб.205	Демонстрация решений кейса

Календарный учебный график на 2022/2023 учебный год программы «Основы механики и робототехники. ОВЗ с НОДА». Линия 1

Педагог д/о – Патрикеева Ольга Николаевна.

Срок обучения – 2 года.

Год обучения -2 год.

Кол-во учебных недель – 36.

Количество часов – 144.

Режим проведения занятий: 2 раза в неделю по 2 часа (45 минут).

Праздничные и выходные дни (по производственному календарю при шестидневной рабочей неделе):

Каникулярный период:

В период школьных каникул время занятий в объединении может быть изменено.

№ п/ п	Месяц	Чис ло	Время проведе ния занятия	Форма заняти я	Кол- во часо в	Тема занятия	Место проведе ния	Форма контроля
1.				Л/ПР		Кейс 1: «Объезд препятствий». Повторный инструктаж.	каб.205	Беседа Тестирование
2.				Л/ПР		Кейс 1: «Объезд препятствий». Повторный инструктаж.	каб.205	Беседа
3.				Л/ПР		Кейс 1: «Объезд препятствий». Повторный инструктаж.	каб.205	Беседа
4.				Л/ПР		Кейс 1: «Объезд препятствий». Повторный инструктаж.	каб.205	Беседа
5.				Л/ПР		Кейс 1: «Объезд препятствий». Повторный инструктаж.	каб.205	Беседа
6.				Л/ПР		Кейс 1: «Объезд препятствий». Повторный инструктаж.	каб.205	Беседа
7.				Л/ПР		Кейс 1: «Объезд препятствий». Повторный инструктаж.	каб.205	Беседа

8.	Л/ПР	Кейс 1: «Объезд препятствий». Повторный инструктаж.	каб.205	Беседа
9.	Л/ПР	Кейс 1: «Объезд препятствий». Повторный инструктаж.	каб.205	Беседа
10.	Л/ПР	Кейс 1: «Объезд препятствий». Повторный инструктаж.	каб.205	Беседа
11.	Л/ПР	Кейс 1: «Объезд препятствий». Повторный инструктаж.	каб.205	Беседа
12.	Л/ПР	Кейс 1: «Объезд препятствий». Повторный инструктаж.	каб.205	Беседа
13.	Л/ПР	Кейс 1: «Объезд препятствий». Повторный инструктаж.	каб.205	Беседа
14.	Л/ПР	Кейс 1: «Объезд препятствий». Повторный инструктаж.	каб.205	Беседа
15.	Л/ПР	Кейс 1: «Объезд препятствий». Повторный инструктаж.	каб.205	Беседа
16.	Л/ПР	Кейс 1: «Объезд препятствий». Повторный инструктаж.	каб.205	Демонстрация решений кейса.
17.	Л/ПР	Мероприятия, направленные на развитие общекультурных компетенций.	каб.205	Беседа
18.	Л/ПР	Мероприятия, направленные на развитие общекультурных компетенций.	каб.205	Беседа

19.	Л/ПР	Мероприятия, направленные на развитие общекультурных компетенций.	каб.205	Демонстрация решений кейса.
20.	Л/ПР	Кейс 2: «Захват груза».	каб.205	Беседа
21.	Л/ПР	Кейс 2: «Захват груза».	каб.205	Беседа
22.	Л/ПР	Кейс 2: «Захват груза».	каб.205	Беседа
23.	Л/ПР	Кейс 2: «Захват груза».	каб.205	Беседа
24.	Л/ПР	Кейс 2: «Захват груза».	каб.205	Беседа
25.	Л/ПР	Кейс 2: «Захват груза».	каб.205	Беседа
26.	Л/ПР	Кейс 2: «Захват груза».	каб.205	Беседа
27.	Л/ПР	Кейс 2: «Захват груза».	каб.205	Беседа
28.	Л/ПР	Кейс 2: «Захват груза».	каб.205	Беседа
29.	Л/ПР	Кейс 2: «Захват груза».	каб.205	Беседа
30.	Л/ПР	Кейс 2: «Захват груза».	каб.205	Беседа
31.	Л/ПР	Кейс 2: «Захват груза».	каб.205	Беседа
32.	Л/ПР	Кейс 2: «Захват груза».	каб.205	Беседа
33.	Л/ПР	Кейс 2: «Захват груза».	каб.205	Беседа
34.	Л/ПР	Кейс 2: «Захват груза».	каб.205	Беседа
35.	Л/ПР	Кейс 2: «Захват груза».	каб.205	Демонстрация решений кейса
36.	Л/ПР	Мероприятия, направленные на развитие общекультурных компетенций.	каб.205	Беседа

37.	Л/ПР	Мероприятия, направленные на развитие общекультурных компетенций.	каб.205	Беседа
38.	Л/ПР	Мероприятия, направленные на развитие общекультурных компетенций.	каб.205	Демонстрация решений кейса.
39.	Л/ПР	Кейс 3: «Езда по линии». Повторный инструктаж.	каб.205	Беседа
40.	Л/ПР	Кейс 3: «Езда по линии».	каб.205	Беседа
41.	Л/ПР	Кейс 3: «Езда по линии».	каб.205	Беседа
42.	Л/ПР	Кейс 3: «Езда по линии».	каб.205	Беседа
43.	Л/ПР	Кейс 3: «Езда по линии».	каб.205	Беседа
44.	Л/ПР	Кейс 3: «Езда по линии».	каб.205	Беседа
45.	Л/ПР	Кейс 3: «Езда по линии».	каб.205	Беседа
46.	Л/ПР	Кейс 3: «Езда по линии».	каб.205	Беседа
47.	Л/ПР	Кейс 3: «Езда по линии».	каб.205	Беседа
48.	Л/ПР	Кейс 3: «Езда по линии».	каб.205	Беседа
49.	Л/ПР	Кейс 3: «Езда по линии».	каб.205	Беседа
50.	Л/ПР	Кейс 3: «Езда по линии».	каб.205	Беседа
51.	Л/ПР	Кейс 3: «Езда по линии».	каб.205	Беседа
52.	Л/ПР	Кейс 3: «Езда по линии».	каб.205	Беседа
53.	Л/ПР	Кейс 3: «Езда по линии».	каб.205	Беседа
54.	Л/ПР	Кейс 3: «Езда по линии».	каб.205	Беседа

55.	Л/ПР	Кейс 3: «Езда по линии».	каб.205	Демонстрация решений кейса
56.	Л/ПР	Кейс 4: «Подъемный рычаг».	каб.205	Беседа
57.	Л/ПР	Кейс 4: «Подъемный рычаг».	каб.205	Беседа
58.	Л/ПР	Кейс 4: «Подъемный рычаг».	каб.205	Беседа
59.	Л/ПР	Кейс 4: «Подъемный рычаг».	каб.205	Беседа
60.	Л/ПР	Кейс 4: «Подъемный рычаг».	каб.205	Беседа
61.	Л/ПР	Кейс 4: «Подъемный рычаг».	каб.205	Беседа
62.	Л/ПР	Кейс 4: «Подъемный рычаг».	каб.205	Беседа
63.	Л/ПР	Кейс 4: «Подъемный рычаг».	каб.205	Беседа
64.	Л/ПР	Кейс 4: «Подъемный рычаг».	каб.205	Беседа
65.	Л/ПР	Кейс 4: «Подъемный рычаг».	каб.205	Беседа
66.	Л/ПР	Кейс 4: «Подъемный рычаг».	каб.205	Беседа
67.	Л/ПР	Кейс 4: «Подъемный рычаг».	каб.205	Беседа
68.	Л/ПР	Кейс 4: «Подъемный рычаг».	каб.205	Беседа
69.	Л/ПР	Кейс 4: «Подъемный рычаг».	каб.205	Беседа Тестирование
70.	Л/ПР	Кейс 4: «Подъемный рычаг».	каб.205	Беседа.
71.	Л/ПР	Кейс 4: «Подъемный рычаг».	каб.205	Демонстрация решений кейса
72.	Л/ПР	Заключительное занятие.	каб.205	Беседа. Выставка

Входная диагностика.

Тестирование.

|--|

1. Виды сил в механическом движении?

- А) сила упругости +
- Б) сила притяжения +
- В) сила тяготения +
- Г) сила трения +

2. Сила, действующая на тело – это:

- А) сила притяжения Земли; +
- Б) сила притяжения неба;
- В) оба из предложенных вариантов правильны;

3. Линия, по которой происходит движение называется:

- А) траектория движения; +
- Б) не имеет названия;
- В) нет правильного ответа.

4. Что называют энергией?

- А) единая мера разных форм движения материи
- Б) физическая величина, показывающая работу тела
- В) и то и другое верно +
- Г) и то и другое неверно

5. Какую силу называют силой трения?

- А) Силу взаимодействия между телами;
- Б) Силу, которая препятствует движению тела;
- В) Силу взаимодействия поверхностей тел, которая препятствует их относительному движению; +
- Г) Силу взаимодействия между телами, которая останавливает движущееся тело.

6. Что изображено на рисунке?

7. Что изображено на рисунке?

8. Что изображено на рисунке?

9. Что изображено на рисунке?

10. Что изображено на рисунке?

Промежуточная диагностика.

Тестирование.

Ф.И._

1. Ускорение - есть?

- А. первая производная от скорости по времени +
- Б. вторая производная от скорости по времени
- В. первая производная от радиус-вектора по времени
- Г. вторая производная от радиус-вектора по времени +

2. Что такое деформация?

- А. изменение формы тела +
- Б. изменение размера тела
- В. изменение вида тела
- Г. изменение скорости тела

3. Назовите виды деформации

- А. сжатие +
- Б. перелом
- В. кручение +
- Г. изгиб +

4. Причина деформации?

- А. тепловое расширение
- Б. действие внешних сил
- В. действие внутренних сил
- Г. движение частиц тела относительно друг друга +

5. Следствие деформации?

- А. возникновение силы тяготения
- Б. возникновение силы упругости +
- В. возникновение силы трения
- Г. возникновение механической силы

6. Сухое трение разделяют на?

- А. трение скольжения +
- Б. трение соприкосновения
- В. трение качения +
- Г. трение вращения

7. Чем определяется коэффициент деформации?

- А. длиной пружины
- Б. толщиной пружины
- В. жесткостью пружины +
- Г. сжатием пружины

8. Формула выражения механической работы

- $A. A=F \times V$
- Б. A=F x S +
- B. $A=V \times S$
- Γ . A=V x t

9. Механическая мощность - это?

- А. сила накала электрической лампочки
- Б. отношение работы ко времени, за которое она совершается +
- В. отношение времени к работе
- Г. правильных ответов нет

10. Механическая энергия, обусловленная движением тела – это?

- А. кинетическая энергия
- Б. потенциальная энергия
- В. внутренняя энергия
- Г. электрическая энергия

11. Когда работа равна нулю?

- А. никогда
- Б. только если сила либо перемещение равны нулю
- В. только если сила перпендикулярна перемещению
- Г. верен и второй, и третий вариант +

12. Что такое вращательные движения?

- А. криволинейные движения
- Б. движение точек тела по окружности
- В. и то и другое верно +
- Г. и то и другое неверно

13. Неравномерное движение бывает:

- а) равноускоренное;
- б) равнозамедленное;
- в) равноускоренное и равнозамедленное; +

14. При равноускоренном движении ускорение точки называется:

- а) величина равная отношению изменению скорости, изменению времени за которое это изменение произошло;
- б) величина равная отношению изменению скорости, изменению времени за которое это изменение не произошло; +

15. Как называется система, на которую внешние силы или сумма всех внешних сил не действует называется:

- А) изолирующей;
- Б) замкнутой;
- В) изолирующей (замкнутой); +

16. Для изолирующей системы импульс:

- А) не изменяется; +
- Б) изменяется:
- В) оба варианта не правильные;

17. При рассмотрении механического движения приходится иметь дело с такими видами сил:

- А) Сила трения, сила тяжести, сила упругости; +
- Б) сила трения и сила упругости;
- В) только сила упругости;

18. Сила упругости возникает при:

- А) Растяжении пружины;
- Б) Сжатии пружины;
- В) при растяжении и сжатии пружины; +

19. Сила упругости –это:

- А) Сила, в которой восстанавливается то состояние тела, которое было до сжатия и растяжения пружины или другого тела; +
- Б) Сила, при которой не восстанавливается то состояние тела, которое было до сжатия и растяжения пружины или другого тела;
- В) Сила, при которой восстанавливается то состояние тела, которого не было до сжатия и растяжения пружины или другого тела;

20. Деформация тела называется:

- А) Изменение формы тела или размера; +
- Б) Изменение только формы;
- В) Изменение только размера;

21. Виды деформации:

- А) Сжатие, кручение, изгиб; +
- Б) Сжатие и изгиб;
- В) изгиб и кручение;

22. Закон Гука-это:

- А) сила упругости, возникающая при пропорциональном удлинении тела и направлено противоположенному перемещению тела при деформации; +
- Б) сила упругости, не возникающая при пропорциональном удлинении тела и направлено противоположенному перемещению тела при деформации;
- В) оба варианта правильны;

23. Причина деформации - это:

- А) движение частей тела, следствием деформационного явления возникновения сил упругости; +
- Б) движение частей тела, следствием деформационного явления возникновения сил тяжести:
- В) движение частей тела, следствием деформационного явления возникновения силы трения;

24. Сила трения возникает:

- А) при непосредственном соприкосновении тел и всегда направлено вдоль поверхности прикосновения; +
- Б) при непосредственном соприкосновении тел, не всегда направлено вдоль поверхности прикосновения;
- В) оба варианта правильны;

25. Сухое трение сил делится на:

- А) трение качения;
- Б) трение скольжения;
- В) трения скольжения и качения; +

26. Закон всемирного тяготения тела - это:

- А) любые падающие тела движутся с ускорением вертикально вниз, если на них не действует сила противоположенная; +
- Б) любые падающие тела движутся с ускорением вертикально вниз, если на них действует сила противоположенная;
- В) отдельные падающие тела движутся с ускорением вертикально вниз, если на них не действует сила противоположенная;

27. Закон гравитации тела - это:

- А) сила, с которой тела притягиваются друг к другу пропорционально массе тела и обратно пропорционально расстоянию между ними; +
- Б) сила, с которой тела притягиваются друг к другу пропорционально массе тела и только;
- В) нет правильных вариантов;

28. Одно из проявлений сил всемирного тяготения - это:

- А) это силы притяжения тел к Земли, которое носит название сила тяжести; +
- Б) это силы притяжения тел к Земли, которое носит название сила упругости;
- В) это силы притяжения тел к Земли, которое носит название сила скольжения;

29. Мерой передачи энергии является:

- А) физическая величина, называемая работой;
- Б) физическая величина, называемая мощностью; +

В) физическая величина, называемая энергией;

30. Различают несколько видов механической энергии, а именно:

- А) кинетическая;
- Б) потенциальная;
- В) кинетическая и потенциальная; +
- Γ) нет правильного ответа;

31. Полная механическая энергия равна:

- А) сумме кинетической энергии;
- Б) сумме потенциальной энергии;
- В) сумме кинетической и потенциальной энергии; +

32. Полная механическая энергия всегда:

- А) постоянной; +
- Б) не постоянной;
- В) нет правильного ответа;

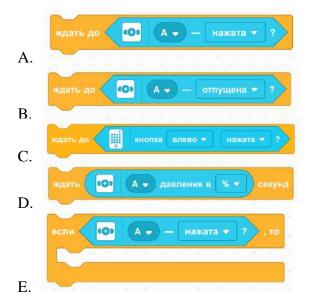
33. На каждую материальную точку действует сила:

- А) как со стороны точек, так и со стороны силы; +
- Б) вообще не действует;
- В) нет правильного ответа;

34. Импульс материальных точек:

- А) равен сумме импульсов этих материальных точек; +
- Б) не равен сумме импульсов этих материальных точек;
- В) нет правильного ответа;

Итоговая диагностика.


Тестирование.

Ф.И	
1.	Какие датчики входят в базовый набор LEGO Spike Prime?
	А. Датчик цвета
	В. Датчик звука
	С. Датчик расстояния
	D. Кнопка
	Е. Гироскоп
2.	Существует ли нулевое положение мотора?
	А. Да, нулевое положение обозначено на моторе
	В. Да, нулевое положение никак не обозначено, устанавливается в программе
	С. Нет, у мотора нет нулевого положения
3.	Какой разъем есть у робота для его подключения к компьютеру по кабелю?
	A. USB Type A
	B. USB Type B
	C. USB Type C
	D. Mini USB
	E. Micro USB
4.	Сколько сегментов у экрана хаба?
5.	В какие порты можно подключать датчики и моторы к хабу?
	А. Моторы только в A, B, C, D, а датчики в 1, 2, 3, 4
	В. Моторы только в А и В, датчики только в С, D, E, F
	С. Моторы только в Е и F, датчики только в A, B, C, D
	D. В любые
6.	Какие языки программирования поддерживает среда разработки LEGO Spike Prime?
	A. Python
	B. C/C++
	C. Pascal
	D. Scratch
	E. LabViwe
7.	На каких операционных системах можно запустить среду разработки LEGO Spike

Prime?

	A. Windows B. MacOS C. iOS D. Android E. Linux
8.	Сколько слотов для хранения программ имеет хаб?
9.	Как можно подключить хаб к компьютеру?
	A. По Wi-FiB. По BluetoothC. По проводуD. По ИК-порту
10.	В какой последовательности робот вполняет действия, записанные в среде разработки?
	А. Сверху-вниз В. Снизу-вверх С. Слева направо D. Справа налево E. Когда как
11.	Сколько градусов поворота колеса соответствуют одному полному обороту?
12.	Можно ли управлять сразу несколькими моторами с помощью одного синего блока управления мотором?
	А. Нет, можно управлять только одним моторомВ. Да, моторы могут управляться независимоС. Да, указанные моторы будут вращаться одинаково
13.	Какие режимы можно выбрать в блоке движения при измерении пройденного расстояния?
	А. Метры В. Сантиметры С. Футы D. Дюймы Е. Секунды F. Градусы
14.	Какой угол поворота блока движения соответствует повороту робота на месте налево?

- 15. Какое расстояние проедет робот, выполняя действие «Двигайся вперед 10 см» в случае, если на нем будут установлены нестандартные колеса большего диаметра?
 - А. Столько же, сколько и со стандартными колесами, 10 см
 - В. Меньше 10 см
 - С. Больше 10 см
 - 16. Какой блок соответствует ожиданию нажатия датчика кнопки?

- 17. Какие визуальные элементы используются в блок-схеме для записи алгоритма?
 - А. Налписи
 - В. Таблицы
 - С. Диаграммы
 - D. Стрелки
 - Е. Блоки
- 18. Какая геометрическая фигура в блок-схеме соответствует блоку действия?
 - А. Треугольник
 - В. Овал
 - С. Прямоугольник
 - D. Ромб
 - Е. Шестиугольник
- 19. В каком случае применяется цикл?
 - А. При осуществлении выбора выполнения тех или иных действий
 - В. При повторении одних и тех же действий
 - С. При ожидании выполнения определенного условия
- 20. Как называются блоки, которые находятся внутри цикла?

- А. Голова цикла
- В. Основа цикла
- С. Тело цикла
- D. Масса цикла
- Е. Условие цикла

Сводная таблица результатов обучения

учащихся по адаптированной дополнительной общеобразовательной общеразвивающей программе

«Основы механики и робототехники. ОВЗ с НОДА». Линия 1

Педагог д/о	
Группа №	год обучения

1. 2. 3. 4. 5. 6. 7. 8. 8.	№п/п	ФИ учащегося	Оценка теоретических знаний (на основе тестирования)	Участие в соревнованиях (10 баллов за каждое)	Работа над проектом (максимум 5 баллов за каждый проект)	Средний балл	Процент
3. 4. 5. 6. 7. 1.			20011p (2011102)		apolit)		
5. 6. 7							
7.							
Итого:		77					

Диагностическая карта

учащихся по адаптированной дополнительной общеобразовательной общеразвивающей программе

«Основы механики и робототехники. ОВЗ с НОДА». Линия 1

Педагог д/о		
Группа №	год обучения	
Вид контроля		

№ п/п	ФИ учащегося	Уровень освоения программы
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
	И	Ітого: